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Abstract. We investigate the zero-temperature coarsening dynamics of a chain of Ising spins
with a nearest-neighbour ferromagnetic and annth-neighbour antiferromagnetic interactions.
For sufficiently large antiferromagnetic interaction, the ground state consists ofn consecutive up
spins followed byn down spins, etc. We show that the asymptotic coarsening into this ground
state can be described in terms of a multispecies reactive gas of elementary excitations. The
basic elementary excitations are identified and each decays at a different power-law rate in time.
The dominant excitations are domains ofn+1 spins which diffuse freely and disappear through
processes which are effectively governed by(n+ 1)-particle annihilation. This leads to a slow
t−1/n temporal approach to the ground state.

1. Introduction

Ising models with nearest-neighbour ferromagnetic and more distant antiferromagnetic
interactions exhibit rich magnetic ordering [1–3]. The competition between ferromagnetism
and longer-range antiferromagnetism leads to different ordered states and an associated
sequence of phase transitions as a function of these two interaction strengths. Such models
were originally formulated to help describe the complex magnetism of the rare earths [4].
Their unusual magnetic ordering is believed to arise from the so-called Ruderman–Kittel–
Kasuya–Yosida (RKKY) interaction [5], in which the exchange interaction between localized
magnetic moments oscillates between ferromagnetic and antiferromagnetic as a function of
their separation. Some of the essential consequences of this situation seem to be captured
by Ising models with competing interactions.

One of the simplest versions is the axial next-nearest-neighbour Ising (ANNNI) model in
which there is an isotropic nearest-neighbour ferromagnetic interaction and a next-nearest-
neighbour antiferromagnetic interaction along a single axis [2]. Even in one dimension,
intriguing magnetic properties arise. For weak antiferromagnetic interaction, the ground
state is ferromagnetic, while for strong antiferromagnetic interaction there is an ‘antiphase’
ground state which consists of two spins up, followed by two spins down, etc. For a specific
ratio of these two interactions, an infinitely degenerate ground state arises in which each
spin domain is of length 2 or greater [6].

Given the disparate natures of these ground states, one might expect that dynamical
behaviour is also strongly affected by such competing interactions. Our goal is to understand
the kinetics of an Ising chain with nearest-neighbour ferromagnetic interactionJ1 andnth-
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neighbour antiferromagnetic interaction−Jn, when the system is endowed with single spin-
flip Glauber dynamics. The Hamiltonian of the system is

H = −J1

∑
i

sisi+1+ Jn
∑
i

sisi+n. (1)

For Jn > J1/n, the ground state is a sequence ofn consecutive up spins followed byn
down spins, etc. Our basic result is that forJn > J1 the asymptotic approach of the system
to this alternating ground state can be described in terms of a reactive gas of elementary
excitations. The rate limiting step of this process is governed by(n+1)-particle annihilation
of the dominant excitations; this implies that the system approaches the ground state in time
as t−1/n.

To provide a context for this work, let us recall the well known example of zero-
temperature (T = 0) coarsening in the Ising–Glauber chain with nearest-neighbour
ferromagnetic interactions only [7]. Spin flips inside ferromagnetic domains are forbidden
at T = 0 because they cost energy, while spins at domain interfaces can flip freely, as
indicated by

−−−−−− ++++++
⇓

−−−−−+ ++++++
since no energy cost is involved. This spin flip is equivalent to the hopping of a domain
wall ‘excitation’ which lies between the neighbouring misaligned spins. Two domain walls
can annihilate when they meet, a process which reduces the energy of the system. This
event is equivalent to a domain which shrinks to zero size via the process

++++++ − ++++++
⇓

++++++ + ++++++.
The correspondence between the ferromagnetic Ising–Glauber chain and a gas of domain
walls which undergo nearest-neighbour hopping and single-species two-particle annihilation
provides a simple way to understand thet−1/2 coarsening dynamics of the spin system [8].
In the following sections we show that the Ising–Glauber chain with competing interactions
can be understood through a much richer picture of reactive excitations.

2. Second-neighbour interaction

2.1. Strong antiferromagnetism:J2 > J1

Let us first treat the Ising–Glauber chain with competing interactions atT = 0 for the
casen = 2, i.e. a near-neighbour ferromagnetic interactionJ1 and a second-neighbour
antiferromagnetic interaction−J2. We focus on the case of strong antiferromagnetic
interaction,J2 > J1, as this is the case which leads to interesting dynamics. For simplicity,
let us consider the dynamics starting from an initial ferromagnetically ordered up state.
Subsequently, we will consider the evolution when starting from an arbitrary initial state.

An initially ferromagnetic system evolves to the alternating· · · + + − − + + − − · · ·
ground state by a two-stage process. First, there is initial nucleation of down domains.
Within a ferromagnetic domain of up spins, there is an energy loss1E = 4(J1− J2) when
a single spin flips to create an isolated down spin. This same energy loss arises for any
nucleation event which occurs within a domain of length> 5 when the flipped spin is at
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least two lattice spacings from both domain walls. After this nucleation, the single-spin
domain can grow to length 2 with an energy loss1E = −4J2, as long as the length of
the neighbouring domain into which this inflation occurs is greater than 2. At the end of
this nucleation stage, therefore, the system consists of ordered· · · ++−−++ · · · regions,
as well as domains of size 1, 3, and 4. Further, domains of size unity exist only if both
neighbouring domains are of length 2.

These remaining domains now undergo a sequence of reactions which ultimately leads
to the system reaching the ground state. To determine this evolution, first consider an
isolated 3-domain within an otherwise stable array to 2-domains. Since the spin on either
edge of the 3-domain can flip without energy cost, the 3-domain can hop isotropically by
two lattice sites, as indicated by

++−−++ − −−++−−
⇓

++−−++ + −−++−−.
Similarly, an isolated 1-domain within a sea of 2-domains also diffuses freely, since either
neighbouring spin of the 1-domain can flip with no energy cost, as indicated by

−−++−+ +−−++−−
⇓

−−++−− +−−++−− .
These freely diffusing 1- and 3-domains are the elementary excitations of the system.

To appreciate the consequences of this statement, consider an isolated 4-domain within
an otherwise stable array of 2-domains. Since there is an energy cost associated with flipping
either spin in the interior of a 4-domain, this process does not occur at zero temperature.
If, however, either spin at the end of the 4-domain flips, for example,

−−++−−−− ++−−++
⇓

−−++−−−+ ++−−++
then the configuration becomes two adjacent 3-domains within the stable sea of 2-domains.
Each of these 3-domains can then diffuse freely; the first step of this process is indicated
by

−−++ − −−+++−−++
⇓

−−++ + −−+++−−++ .
One can thus regard an isolated 4-domain as a [3, 3] resonant state which is formed whenever
two 3-domains collide. This resonance is short-lived, however, since its binding energy is
zero.

Continuing this reasoning, consider the evolution of a 4, 3 pair within a stable sea of
2’s. Since both the 3 and 4 diffuse freely, these two excitations could move apart with zero
energy cost. On the other hand, the 3-domain can shrink and the 4-domain can grow to
size 5, also with zero energy cost. If this occurs, the 5 is unstable to the nucleation event:
5→ 2+ 1+ 2. Due to the fact that the 4 can be viewed as a [3, 3] resonance, the resultant
stoichiometry of this process is 3+ 3+ 3→ 1, i.e. 3’s annihilate through triple collisions.
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Consider now how isolated 1’s evolve. Since 1’s diffuse freely they react only upon
meeting another 1 or a 3. In the former collision, a 4 isformed,

++−−++ − +−−++−−
⇓

++−−++ + +−−++−−
with an associated energy loss1E = −4J1. Because the 4 is equivalent to a pair of 3’s,
the ultimate stoichiometry of this process is 1+ 1→ 3+ 3. It is also possible for three
1’s to diffuse to adjacent lattice sites. If this occurs, these domains can evolve via the
‘anti-nucleation’

++−+ −++
⇓

++−− −++
with an associated energy decrease1E = −4(J1+ J2).

Finally if a 1 meets a 3, they react to form a stable pair of 2’s,

++−−+− −−++−−
⇓

++−−++ −−++−−
with an associated energy loss1E = −4J2. This can be viewed as the two-species
annihilation process 1+ 3→ 0, since the pair of 2’s that are formed become part of the
stable ground state.

The underlying stoichiometry of these processes can therefore be summarized by the
four reactions

1+ 1→ 3+ 3 1E = −4J1

1+ 3→ 0 1E = −4J2

3+ 3+ 3→ 1 1E = +4(J1− J2)

1+ 1+ 1→ 3 1E = −4(J1+ J2).

(2)

Since these processes all lower the energy, they each occur at the same rate whenT = 0.
The overall effect of these reactions is that the density of these elementary excitations
ultimately vanish. Given that 1’s disappear through single-species binary collisions, the
role of triple collisions of 1’s is asymptotically negligible. In contrast, triple collisions of
3’s continue to play a role asymptotically, as we shall see below.

Let us now determine the time dependence for the densities of these excitations in
the mean-field limit. UsingA to denote both domains of length 3 and their density, and
similarly usingB for 1’s, the rate equations associated with the reactions of equation (2)
are

Ȧ = −3A3+ 2B2+ B3− AB (3)

Ḃ = A3− 2B2− 3B3− AB. (4)

A naive qualitative analysis of these equations indicates thatA’s are asymptotically
dominant. Thus usingA� B, the above rate equations simplify to

Ȧ ' −3A3− AB (5)

Ḃ ' A3− AB. (6)
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Subtracting equation (6) from (5) giveṡA − Ḃ ' −4A3. GivenA � B, we neglectḂ to
give the closed equatioṅA ' −4A3. Comparing this with equation (5) yieldsA3 ' AB.
This impliesB ' A2, which agrees withB � A. The results of these considerations are

A(t) ' 1√
8t

and B(t) ' 1

8t
(7)

which are confirmed by numerical integration of the rate equations.
Let us now adapt the rate equations to the case of one dimension. Quite generally, we

write

Ȧ ' −3R − r (8)

Ḃ ' R − r. (9)

Here R is the rate at whichA’s disappear due to the triple collisions andr is the rate
at which bothA’s and B ’s disappear due to their mutual annihilation. These equations
are at the same level of approximation as equations (5) and (6), as we again neglect the
effect of interactions between twoB ’s. The rateR can be shown to scale asA3/ ln(1/A)
[9]. The cubic term is just the mean-field rate of triple collisions betweenA’s, and the
logarithmic correction arises because one dimension is the critical dimension for the three-
particle reaction–diffusion processes [10]. For three-particle annihilation, this reactivity
leads to the rate equatioṅA ∼ −A3/ ln(1/A), which predictsA ∼ √ln t/t , in agreement
with previous numerical and theoretical treatments [11]. The two-species annihilation rate
r can be estimated asr ∼ B/τ , whereτ is the reaction time for anA and aB to meet by
diffusion. This reaction time is proportional to the square of the distance between aB and
its nearestA; therefore,τ ∼ 1/A2 which givesr ∼ BA2.

Subtracting equation (9) from (8) giveṡA − Ḃ ' −4R. Since we again anticipate
thatA � B, we ignoreḂ to obtainȦ ' −4R. This relation implies that triple collisions
are the dominant kinetic mechanism for elimination ofA’s, so that this density decays
as in three-particle annihilation. The factor of 4 iṅA ' −4R indicates that fourA’s
eventually disappear after a triple collision—three particles are eliminated in the process
A+A+A→ B, and then the newly-formedB will eliminate anotherA. To determineB(t),
note that equation (8), together witḣA ' −4R, imply thatr ' R; that is, the gain and loss
terms in equation (9) cancel. The relationr ' R can be rewritten asB ∼ R/A2 ∼ −Ȧ/A2.
We therefore conclude that the density of elementary excitations are

A(t) ∼
√

ln t

t
and B(t) ∼ 1√

t ln t
. (10)

Monte Carlo simulations of theT = 0 Ising–Glauber chain yield results which are
qualitatively consistent with these predictions. As shown in figure 1, the densities of the
various elementary excitations decay at different temporal rates. Over the last two decades of
data, linear least-squares fits give 0.40 and 0.56 for the exponent associated with the density
of 3’s and 1’s, respectively. However, curvature in the data is clearly evident and the linear
fit is not indicative of the asymptotic behaviour. In fact, the data for the density of 1’s is
curved upward while that for the density of 3’s is curved downward; these are suggestive
of an asymptotic exponent of1

2 with slowly vanishing pre-asymptotic corrections which are
qualitatively consistent with equations (10). A serious quantitative test of (10) would require
extensive simulation, since the corrections to the local exponents will vanish only as 1/ ln t .
Similar least-squares fits give exponents for the density of 4’s and 5’s as 0.84 and 1.42 with
both both data sets curving downward. These features are qualitatively consistent with the
hypothesis that 4’s and 5’s are equivalent to [3, 3] and [3, 3, 3] resonances, respectively, so
that their densities should scale asA2 andA3/ ln(1/A).
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Figure 1. Density of domains of length 1 (◦), 3 (�), 4 (M) and 5 (O). Simulation results are
based on 1000 realizations of a chain of 20 000 sites withJ2/J1 > 1.

To provide an additional insight into the basic nature of this coarsening process it is
helpful to consider the caseJ1 = 0, where the chain breaks up into two independent
antiferromagnetic sublattices. For each sublattice, the dynamics must coincide with the
usualt−1/2 Glauber coarsening. It is instructive to see how this behaviour arises within our
picture of elementary excitations. The crucial feature for the caseJ1 = 0 is that the process
1+ 1→ 3+ 3 now involves no energy change (see equation (2)) and the reverse process
3+ 3→ 1+ 1 occurs freely. This additional process leads now to the rate equations

Ȧ = −3A3− 2A2+ 2B2+ B3− AB (11)

Ḃ = A3+ 2A2− 2B2− 3B3− AB. (12)

The cubic term turns out to be negligible and the resulting asymptotic behaviour is
A(t) = B(t) ∼ 1/t . Similarly, for the one-dimensional system, the density of 1’s and
3’s become identical and both decay ast−1/2. The role of the 3+ 3→ 1+ 1 reaction and
its influence on the rate equations shows clearly that the dynamics of the Ising–Glauber
chain with competing interactions is in a different universality class than that of the purely
antiferromagnetic spin chain.

2.2. Weak antiferromagnetism:J2 < J1

To complete the discussion of the competing interaction Ising–Glauber chain, let us consider
weak antiferromagnetism, namely,J2 < J1. The basic new dynamical features are that
nucleation of isolated single-spin domains and also the coalescence 3+ 3+ 3 → 1 are
energetically forbidden atT = 0, since for both processes1E = 4(J1 − J2) is now
positive. We shall argue that the combination of these two features leads to the system
evolving to a trivial non-equilibrium steady state. For the caseJ2 < J1/2 the ferromagnetic
ground state cannot be reached because of the repulsion of domain walls which forces them
to always be at least two lattice spacings apart. On the other hand, forJ1/2 < J2 < J1,
the+ + − − + + −− ground state cannot be reached because there is no mechanism for
isolated domains of length> 3 to break up. In both the casesJ2 < J1/2 andJ1/2< J2 < J1
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the local spin dynamics is the same, but their manifestation in terms of domains is rather
different.

The absence of domain nucleation means that a ferromagnetic initial state does not
evolve; thus an initial state with many domains is needed to have interesting dynamics. In
this case, finite size domains of length> 2 can evolve by the diffusion of domain walls
between oppositely-oriented spins, just as in the case of the classical Ising–Glauber model
with J2 = 0. However, the absence the process 3+ 3+ 3 → 1 means that 1’s and 3’s
evolve quite differently. Within the rate equation approximation, there is noA3 term on the
right-hand sides of equations (3) and (4). An asymptotic analysis of these equations in the
spirit of the previous subsection shows that the density of 1’s decays exponentially in time,
while the density of 3’s saturates to a finite value. Additionally, while resonances, such as
[3, 3], [3, 3, 3], etc can form freely by collisions between 3’s, such high-order resonances
cannot transmute to another form, but merely re-fragment into lower-order resonances of
length> 3. Because of this persistence of 3’s, the ground state, namely, ferromagnetic for
J2 < J1/2, and the configuration· · · + + − − + + − − · · · for J1/2 < J2 < J1, is never
reached. However, for the caseJ2 = J1/2, the ground state is an array of domains which
all have lengths> 2 [6], and this can be reached by Glauber dynamics.

Another intriguing aspect of the weakly antiferromagnetic system is that for allJ2 < J1,
repulsion of domain walls ensures that domains of length> 2 can never be eliminated,
while initial domains of length 1 can disappear by anti-nucleation. The flipping of a single
spin within a string of> 3 consecutive antiferromagnetic spins can be viewed as the
replacement of the antiferromagnetic triplet by a ferromagnetic ‘trimer’. This replacement
of antiferromagnetic triplets by a ferromagnetic trimer continues until an antiferromagnetic
region is converted into a ferromagnetic domain. Once all antiferromagnetic strings are
eliminated the subsequent dynamics cannot change the number of domains. This provides
an invariant to classify each initial state.

The replacement dynamics is equivalent to the random sequential adsorption of trimers
which can overlap. The evolution of this adsorption process can be solved according to
well known procedures [12]. LetPn(t) denote the probability that exactlyn consecutive
sites are occupied by 1-domains, that is, an antiferromagnetically ordered string of length
n. The probabilitiesPn(t) evolve according to the rate equations

Ṗn = −(n+ 2)Pn + 2
∞∑

j=n+1

Pj . (13)

The loss term arises because the adsorption of a trimer whose centre coincides with any
of the n sites of the string or the two sites adjacent to the string destroys then-string.
Similarly, the gain term arises from processes in which the adsorption of a trimer onto a
larger string leads to the creation of ann-string.

To solve the rate equations, the ansatz

Pn(t) = F(t)f n+2(t) (14)

transforms the infinite set of differential equations (13) into the pair of equations

ḟ = −f Ḟ = 2Ff 2

1− f . (15)

Consider now an initially disordered Ising chain (corresponding to a quench fromT = ∞
to T = 0). An antiferromagnetic string of lengthn occurs with probabilityPn(0) = 2−n−3,
which implies

F(0) = f (0) = 1
2. (16)
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Solving equations (15) subject to (16) yields

f (t) = 1
2e−t (17)

F(t) = 2(1− 1
2e−t )2 exp[e−t + 1

4e−2t − 5
4]. (18)

Therefore domain walls inside antiferromagnetic strings quickly disappear and the total
density of domain walls reaches a saturation level. Since the subsequent dynamics does
not allow for processes which change the number of domain walls, the system continues to
explore a sector of the phase space which contains all states with the same number of domain
walls. The system decays into its asymptotic sector exponentially in time. Different sectors
are mutually disconnected, and the sector eventually reached by the system depends on initial
conditions. This initial condition dependence and exponential relaxation are outcomes of the
lack of ergodicity in the Glauber dynamics of the Ising chain with competing interactions
for all J2 < J1.

2.3. Marginal antiferromagnetism:J2 = J1

In the marginal caseJ2 = J1, the crucial difference with the case of strong
antiferromagnetism,J2 > J1, is that the process 3+3+3→ 1 now involves no energy gain
and thus the reverse process 1→ 3+ 3+ 3 can also occur freely. The rate equations (8)
and (9) are thus modified to

Ȧ ' 3B − 3R − r (19)

Ḃ ' R − r − B. (20)

To determine the asymptotic behaviour, it proves convenient to transform these equations
to

Ȧ− Ḃ ' −4(R − B) (21)

Ȧ+ 3Ḃ ' −4r. (22)

We now ignore Ḃ on the left-hand sides. Combining the estimater ∼ BA2 with
equation (22) givesB ∼ −Ȧ/A2. This impliesB � −Ȧ, so that equation (21) now
givesB ' R, or Ȧ ∼ −A5/ ln(1/A). We therefore conclude that whenJ2 = J1 the density
of elementary excitations are

A(t) ∼
(

ln t

t

)1/4

and B(t) ∼
(

1

t3 ln t

)1/4

. (23)

Thus in the marginal case ofJ2 = J1, the Ising–Glauber chain still coarsens, but at a much
slower rate than in the case of strong antiferromagnetism,J2 > J1.

3. Third- and more distant-neighbour interaction

Our general approach can be adapted to longer range antiferromagnetic interactions. We
first outline basic relaxational features for an antiferromagnetic third-neighbour interaction;
the behaviour for arbitrary range antiferromagnetic interaction follows inductively.
The Hamiltonian now isH = −∑i (J1sisi+1 − J3sisi+3) and for sufficiently strong
antiferromagnetic interactionJ3 > J1/3 the ground state consists of alternating domains
of length 3, · · · + + + − − − + + + · · ·. Starting from the ferromagnetic up state, the
evolution to the ground state again proceeds by a two-stage process whenJ3 > J1. While
the ground state occurs whenJ3 > J1/3, we shall employ the stronger inequalityJ3 > J1
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in the following to guarantee that this ground state is accessible via single spin-flip Glauber
dynamics.

In the initial nucleation stage, it is energetically favourable for a spin within an large
up domain to flip if this spin is three or more lattice spacings from any domain boundary.
Thus domains of length> 7 are unstable to such nucleation events. It is also energetically
favorable for this isolated down spin domain to grow to size 3, as long as the expanding
domain wall remains at least three lattice spacings from adjacent domain walls. At the end
of the nucleation stage, therefore, all domains have length6 6. Further, domains of length
1 or 2 must be surrounded by domains of length 3; otherwise the central domain would
expand until its size reached 3.

A basic observation is that the true elementary excitations are domains of length 2 and
of length 4, as these are the only objects which diffuse freely within a stable sea of 3’s.
All other defects are resonant states of these two elementary excitations. To determine
the nature of the coarsening, first consider the resonances of 4-domains. For example, a
5-domain is formed when two 4’s meet and interact, so that one 4 shrinks to length 3,
while the other grows to length 5. There is no energy cost associated with this process, so
that a 5-domain can be viewed as a [4, 4] resonance. Similarly, a 6-domain is a [5, 4], or
equivalently a [4, 4, 4] resonance. Finally, a 7-domain may be produced by the conversion
of 6+ 4→ 7+ 3; thus the 7 is a [4, 4, 4, 4] resonance. At the centre of the 7-domain, a
single spin can flip, thereby nucleating a 1-domain and two surrounding stable 3-domains.
The resultant stoichiometry of this process is therefore, 4+ 4+ 4+ 4→ 1.

Conversely, consider the resonances and interactions associated with 2-domains. When
two 2’s within a stable sea of 3’s meet, a 1-domain is formed, as indicated by

+++−−+ +−−−+++
⇓

+++−−− +−−−+++ .
Since there is no energy cost associated with this process, a 1-domain is simply a [2, 2]
resonance. When three 2’s meet, there are several possible zero-energy-cost outcomes. If
the interior spin of the outer 2-domain flips, then the result is 2+ 2+ 2 → 1+ 3+ 2.
Since the 1-domain is a [2, 2] resonance, this process can be considered as the first step
in separating the three initial domains. However, if one of the spins in the middle domain
flips, then the outcome is 2+ 2+ 2 → 3+ 1+ 2. Once a 3, 1, 2 state is reached, it is
energetically favorable for the central isolated spin to flip thus giving 3+ 1+ 2→ 6, i.e. a
[4, 4, 4] resonance. This last step is accompanied by the energy loss−4J1. The outcome of
more than three 2’s meeting can be obtained by grouping the 2’s into triplets and analysing
the outcome of each triplet in series. Finally, when a 2 and a 4 meet, it is energetically
favourable for 2→ 3 and 4→ 3. This can be viewed as the two-species annihilation
2+ 4→ 0, since the two 3’s formed in the reaction belong to the stable ground state.

From these basic processes, the governing reactions for this system are

4+ 4+ 4+ 4→ 1→ 2+ 2

2+ 4→ 0

2+ 2+ 2→ 6→ 4+ 4+ 4.

(24)

For these reactions, the associated rate equations for the density of 4’s(A) and 2’s(B) are

Ȧ = −4A4+ 3B3− AB (25)

Ḃ = 2A4− 3B3− AB. (26)
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Figure 2. Density of domains of length 1 (∗), 2 (◦), 4 (�), 5 (M), and 6 (O). Simulation results
are based on 500 realizations of a chain of 20 000 sites withJ3/J1 > 1.

The structure of these equations is similar to the second-neighbour interaction case.
Following the same reasoning as used previously, we findA(t) ∼ t−1/3 andB(t) ∼ t−1.
Similarly, we may adapt the rate equation above to describe the system in one dimension
by following the approach used to write equations (8) and (9). This leads to

Ȧ ' −4A4− A2B (27)

Ḃ ' 2A4− A2B (28)

with the asymptotic behaviourA(t) ∼ t−1/3 andB(t) ∼ t−2/3.
As in the case of first- and second-neighbour interactions, simulations for the densities

of the various elementary excitations indicate that they decay at different temporal rates
(figure 2). Over the last two decades of data, linear least-squares fits give 0.25 and 0.80
for the exponent associated with the density of 4’s and 2’s, respectively. Once again, the
sense of the curvature in these two data sets is consistent with the respective asymptotic
exponents of13 and 2

3. However, even more so than in figure 1, the linear fit is not indicative
of asymptotic behaviour. We merely point out that our picture of elementary excitations
allows one to express all densities in terms of the density of 4’s. This predicts that the
density of 1’s scales asA4, the densities of 2’s and 5’s scale asA2, and the density of 6’s
scales asA3. This is only marginally consistent with the data, a feature which we attribute
to slow approach to asymptotic behaviour.

Finally, we may apply a similar geometrical picture of elementary excitations to treat the
general case of the Ising–Glauber chain with competing first- andnth-neighbour interactions
when Jn > J1. In this case, the basic excitations are domains ofn + 1 spins (A) and
domains ofn−1 spins (B), each of which diffuses freely within a stable ground state sea of
alternating ferromagnetic strings of lengthn. Other types of excitations are resonances of
these elementary excitations. The basic kinetic mechanisms that govern the coarsening of
the spin system are the(n+ 1)-particle annihilation of contiguous groups ofA excitations
via (n + 1)A → 1, and the two-species annihilationA + B → 0. An analysis of the
corresponding rate equations again indicates that these two processes are of the same order
of magnitude. Consequently, the ground state is approached ast−1/n and the densities of
the basic excitations decay according toA(t) ∼ t−1/n andB(t) ∼ t−(n−1)/n.
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4. Conclusions

We investigated the coarsening kinetics of the Ising chain with single spin-flip dynamics
when a distantnth-neighbour antiferromagnetic interaction−Jn competes with the nearest-
neighbour ferromagnetic interactionJ1. For Jn > J1, this competition leads to slower
zero-temperature coarsening compared with the case of nearest-neighbour ferromagnetic
interactions only. Other types of non-universal relaxation phenomena have been reported
for alternating interactions and other modifications of the pure Ising chain [13]. The case
of a competing interaction, however, is amenable to an intuitively appealing description
in terms of elementary excitations which makes clear the mechanism for the new kinetic
behaviour. It is intriguing that the nature of the elementary excitations and the spectrum of
resonances are not obviously connected with the microscopic interaction of the spin system.

For generalnth-neighbour antiferromagnetic interaction, the elementary excitations are
ferromagnetic strings ofn+ 1 andn− 1 spins. The former interact and disappear through
(n+1)-particle single-species annihilation, whilen+1 andn−1 mutually annihilate when
they meet. These two processes are of the same order of magnitude so that the rate of the
overall coarsening process can be viewed as being limited by(n+ 1)-particle annihilation.
This leads to a coarsening which proceeds ast−1/n. The marginal caseJn = J1 admits
additional microscopic processes which leads to even slower coarsening.

It is interesting that Glauber dynamics provides only a tenuous connection with
equilibrium properties of the system. That is, the dynamical change of behaviour atJn = J1

is disconnected from the corresponding equilibrium behaviour, where ferromagnetism occurs
for Jn < J1/n, a ground state of alternating domains ofn ferromagnetic spins occurs for
Jn > J1/n, and an infinitely degenerate ground state consisting of alternating domains of
> n spins occurs forJn = J1/n.

Finally, it is worth noting that the presence of two kinds of elementary excitations
implies the existence of two characteristic length scales (the reciprocals of their
corresponding densities). This is in contrast to conventional coarsening phenomena which
typically exhibit asingle length scale. However, violation of scaling has been reported in
several coarsening systems. In particular,two length scales arise in vector order parameter
systems [14], in the cyclic Lotka–Volterra model [15], in single-species annihilation with
combined diffusive and convective transport [16], and in three-dimensional Ising systems
with competing interactions [17].
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